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We investigate the survival-return probability distribution and the eigenspectrum for the tran-
sition probability matrix, for diffusion in the presence of perfectly absorbing traps distributed with
critical disorder in two and three dimensions. The density of states is found to have a Lifshitz tail
in the low frequency limit, consistent with a recent investigation of the long-time behavior of the
survival probability. The localization properties of the eigenstates are found to be very different

from diffusion with no traps.

PACS number(s): 05.40.+j, 05.50.4+-q, 64.60.Fr

I. INTRODUCTION

Diffusion in the presence of randomly distributed traps
appears in many physical situations [1,2]. Well-known
examples include the migration of optical and magnetic
excitations in solids [3]. Diffusion with traps differs from
the usual kinetic random walk in an inhomogeneous envi-
ronment since each diffusive trajectory must be weighted
the same, unlike in the latter case [4-7]. This model,
known also as the ideal chain, has received much less
attention than the kinetic random walk.

For example, although the case of uncorrelated or
weakly correlated disorder has been fairly well studied
[8-10], only recently was the case of strongly correlated
disorder addressed [5-7]. Unlike in the former case, no
rigorous results are known for many key quantities in
the case of the strongly correlated disorder. For exam-
ple, the survival probability, which is the probability for
a walk not to be absorbed by a trap after t steps, is
not known rigorously. A recent investigation [6], how-
ever, showed that it is possible to extract the asymptotic
behavior of the survival probability for the strongly cor-
related disorder by considering the full probability distri-
bution for the number of surviving walks at the (discrete)
time t. The result was found to be qualitatively similar to
the case of uncorrelated disorder, the so-called Donsker-
Varadhan behavior [10], but quantitatively different with
different numerical values of the exponents. Specifically,
an asymptotic, stretched-exponential decay of the prob-
ability was predicted where the exponent was related to
the free energy fluctuation exponent .

In this work, we first apply the same method as in [6] to
a closely related but slightly different quantity (called the
survival-return probability, see below), which results in a
similar prediction of a stretched-exponential tail. This
quantity is, however, directly related to the spectral den-
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sity of the eigenvalues of the transition probability matrix
which describes the diffusion process. This allows us to
test the prediction by numerically evaluating the spectral
density and comparing with the prediction. In addition,
the behavior of the density of states is itself of physical
interest since it is in principle experimentally measurable,
e.g., by Raman scattering [11].

As a prototype of a system with strongly correlated
substitutional disorder, the incipient infinite percolation
cluster [12] in two (square lattice) and three dimensions
(simple cubic lattice) will be considered. In this model,
perfectly absorbing traps are distributed with probability
1—p., where p. is the critical threshold for the probability
for a site to be present in the lattice. The vacancies thus
play the role of the traps.

The work is organized as follows. In Section II the
analogy to the Schrodinger equation is carried out. In
Sec. III the survival-return probability is studied. Section
IV establishes the connection with the density of states
which is then studied numerically in Sec. V. In Sec. VI
the localization properties of the eigenmodes are briefly
studied and finally Sec. VII summarizes the conclusions.

II. ANALOGY TO THE SCHRODINGER
EQUATION

When the total probability is a conserved function of
time, the probability Py, x(t) that a random walker is at
the position x at the (discrete) time ¢ in a d-dimensional
hypercubic lattice satisfies the general master equation

PxO,X(t + 1) = PxD,X(t)

+ Z[wx,yPXo,y(t) — Wy x Py x(t)] (2.1)

y(x)

where x € Z9 is spanned by an orthonormal basis
{€u.}u=1,..,a and wyy is the transition probability per
unit time from y to x. Site y(x) denotes a nearest neigh-
bor of x and the summation is over all nearest neighbors
of x. For the present problem with traps, however, we

1093 ©1994 The American Physical Society



1094 ACHILLE GIACOMETTI AND HISAO NAKANISHI 50

assume that the probability at a trap site is immediately
lost and that the probability at the next time step is
determined solely by the incoming probability from the
available neighbor sites. Furthermore, we take a uniform
transition probability, i.e., wx y = 1/z for available near-
est neighbors x and y where z is the coordination number
of the full lattice. Therefore, denoting the set of available
sites by C and that of traps by C1, we get

1
Peox(t+1) =~ N Pey(t) forxec, (22)
y(x)ec
P x(t)=0 forxecC*. (2.3)
Using the discrete time derivative defined as
0
EPXOYX(t) EPXo,x(t+1) _Pxoyx(t)’ (24)
we can write Eq. (2.2) as
0] 1
EZPXo,X(t) =3 Z[él,lx—yl — 20y x| P,y (t)
y
1
— =V Py x(t), (2.5)
z
where we defined a hard core potential
_f 400, xecCt (trap),
Vx = { 0, x €C  (available site) . (2:6)
Then we can write Eq. (2.5) as
7]
észo'x(t) = —HPy, x(t) (2.7)
where we defined the Hamiltonian
1 2
H=-(-Vi+V). (2.8)
z

The discrete spatial derivative is defined as usual as

V uPxox(t) = Pxo,x+é‘. (t) = Pxox(%)- (2.9)

By analogy to the case of the Schrédinger equation for
a binary random alloy under the tight binding approxi-
mation [13], one then expects a stretched-exponential tail
(called the Lifshitz tail) for the low-energy behavior of the
density of states. The crucial feature for this behavior is
the fact that our binary potential represents a random,
infinite barrier which isolates the low-energy band and
allows the Lifshitz argument to apply. This corresponds
to the fact that the traps do not allow a stationary state
(frequency w = 0). In contrast, the case of the kinetic
random walk with conserved probability cannot be cast
in the form of Eq. (2.7); e.g., for the myopic ant, there is
a dispersion in the first term inside the brackets on the
right-hand side of Eq. (2.5) and for the blind ant there is
one for the second term in the brackets. This corresponds
to the fact that the conservation of probability allows a
stationary state to exist as well as other states leading
up to it. We believe that this is why the density of states
in the kinetic random walk problem does not have a Lif-
shitz tail [14]; rather, it has a power law behavior in the
low-energy limit governed by the spectral dimension [15].

III. SURVIVAL-RETURN PROBABILITY

The master equation (2.2) can be put in a transfer ma-
trix form and numerically solved by the iteration of this
matrix [5,6]. All the quantities of interest can then be
computed rather accurately, with the exception of the
power moments of multiplicative random variables such
as C = C(xo,t), which is the number of ¢t-step walks hav-
ing the common starting point xo. This is due to the fact
that these moments are not self-averaging, which forces
us to compute the full probability distribution P(C,t)
[6].

A similar feature of the lack of self-averaging holds true
for the quantity Co = Cx, x,(t) which is the number of
walks that return to the starting point xo after t steps.
This quantity determines the survival-return probability
P2(t) by

Pg(t) = Cxo,xo (t)/zt' (3.1)

In Fig. 1, our numerical result for the distribution of
In Cx, x(t), denoted by P(InCp) = P(Co,t)Cxq x, (%), is
shown for the square lattice in d = 2 for various ¢, while
in Fig. 2 the analogous result for the simple cubic lattice
in d = 3 is shown. In the numerical work, each disor-
der configuration was generated relative to a seed site,
which also served as the starting point xo of the chains
of 1600 steps to be exactly enumerated. The final results
were obtained by averaging over a large number (typi-
cally 6000) of independent disorder configurations.

The distribution can be approximated very accurately
by a Gaussian; that is, we may express P(Co,t) by a
log-normal distribution of the form

3.00, T 1 T T
x10
2.50

2.00 —

1.50

P(ln Co)

1.00

0.50

0.00 J:

-100.0 0.0 100.0 200.0
In Co

300.0 400.0

FIG. 1. Calculated distribution P(In Cp), for t = 400 (Q),
t = 800 (A), t = 1200 (+), and t = 1600 (O), for the square
lattice in d = 2. The solid curves are the best fit results
derived from Eq. (3.2). The values of Cy were normalized by
an arbitrary factor 2.8 for convenience.
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FIG. 2. Calculated distribution P(ln Co), for t = 400 (O),
t = 800 (A), t = 1200 (+), and t = 1600 (¢O), for the simple
cubic lattice in d = 3. The solid curves are the best fit results
derived from Eq. (3.2). The values of Cyp were normalized by
an arbitrary factor 3.0 for convenience.

0.00 )
-100.0 0.0

where
At = InCxy o (2) 5 (3.3a)
02 = [0 Cry xo ()2 — In Crg g (2) (3.3b)

The mean A; and the variance o? both depend on the
time t. This dependence can be deduced from the log-
normal fitted but can also be directly evaluated from the
logarithmic moments of Cy which are much easier to ob-
tain numerically than the power moments. The long-time
behavior for these two quantities can be fitted rather well
by

At ~tlnzess — at¥e R

o} ~ pt¥xo

(3.4a)
(3.4b)

where a, 3, and z.5s are constants.

This behavior is similar to the case of the survival prob-

ability
Ps(t) = C(x0,t)/2* (3.5)
as discussed in Ref. [6].

The best fit values of the exponents are summarized
in Table I. The calculations based on the log-normal fit
and those directly from the logarithmic moments give
consistent results as shown. In particular, the value of
the effective coordination number z.f¢ in d = 2 is z.f5 =
3.62 + 0.01 (from log-normal fit) and 2z.;; = 3.60 + 0.01
(from direct calculation). In d = 3, we find 2,55 = 4.33%

TABLE I. Summary of the exponents o and xo defined in
the text. The labels (D) and (I) mean direct evaluation and
from the log-normal distribution, respectively.

d Yo(D) Po() xo(D) xo(1)
2 0.70 &+ 0.01 0.69 + 0.01 0.65 + 0.01 0.65 + 0.01
3 0.78 + 0.03 0.83 +0.03 0.72 +0.01 0.70 + 0.01

0.14 and z.sy = 4.12 £ 0.11 from the two procedures,
respectively. The higher relative value z.¢/z in d = 2
than d = 3 is not surprising and is due to the much more
compact structure of the incipient infinite cluster in two
dimensions. The effect of the traps is indeed to force
the diffusion into regions of high connectivity in order to
maximize the entropy [6,7].

The fact that o2 > ), for sufficiently long times has
a consequence that the log-normal distribution has to be
cut off both at the short and long times as discussed in
[6] for the case of the survival probability. If this were
not the case, all the moments of Cx, x,(t), which can be
easily computed from Eq. (3.2), would grow faster than
2%, which is clearly impossible. Therefore, we assume a
cutoff 1 < Cy, x,(t) < 2* (which is certainly true), and
carry out the calculation of the moments in the same
manner as shown in Ref. [6,7] for C(x¢,t). This calcu-
lation yields a Donsker-Varadhan type behavior [10] for
the first moment of Cy, x, (t)/z¢,

In Pg(t) ~ —2(07x0) | (3.6)
where X is the exponent appearing in Eq. (3.4a). This is
qualitatively similar to the behavior of the survival prob-
ability Ps(t) [6,7,16] (but generally with different numer-
ical value for the exponent). However, it is even qualita-
tively distinct from the behavior of the return probability

Po(t) = Cxo,xo (t)/C(XOy t)v

which was also calculated in Ref. [6] and found to be a
power law in ¢ for large t.

(3.7)

IV. DENSITY OF STATES

The transition probability matrix W is a random, non-
negative definite matrix of size S x S where S(C) is the
number of available sites of a particular configuration C
and, for our choice of the transition probabilities, it has
elements Wy , given by

1/z if|lx—y|=1and x,y€C,
Wy = { 0/ otLerwisle . (4.1)
We will connect the spectral properties of this matrix
to the behavior of the survival-return probability P2(t)
in the same way as for the kinetic random walks [18].
This relation will be completely general and valid in any
dimensions and any amount of disorder.
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The uniformly weighted mean of P2(t) over all starting
points of a given disorder configuration of size S is simply

(PS()) = D Cxomo(t)/(2'S) - (4.2)
xo€C
For a given starting point, we have
Cxo,xo (t)/zt = e:fowtexc., (43)

where ey, is the column vector whose components are all
zeros except the component (which is 1) corresponding
to the site xo, and efa is the corresponding row vector
of ex,. The superscript T refers to the transpose in the
matrix notation. Thus,

(Ps(t)) = TrW*/S =3 \‘/S (4.4)

where A; are the eigenvalues of W.

For the case of a bipartite medium (e.g., a cluster on
the square lattice or the simple cubic lattice), the eigen-
spectrum is symmetric about zero. In this case, (P2(t))
is zero for all odd time steps ¢ and twice the sum only
over the positive eigenvalues for the even times ¢. (For
non-bipartite cases this is no longer true, but the asymp-
totic long-time behavior should be largely determined by
the part of the spectrum near the maximum in any case.)
For the bipartite cases we have

(PS(1) = (2/8) Y e (45)

where the sum is over the positive spectrum and we let
the eigenvalues A\; = e~ % with ¢; > 0. Laplace trans-
forming this, we get

PY(w) = LUPSO= 2/9) S [ T

1
=Y g 4o
Then, using the well-known identity,
1 1 .

where P stands for the principal part in the sense of the
distributions, we obtain

ple) = —%Imﬁg(—e +i0t) (4.8)

where the disorder-averaged density of states p(e) was
defined to be

p(e) = (2/8) Za(e —€).

(4.9)

If we now assume a stretched-exponential behavior for
the survival-return probability in the long-time limit as
discussed earlier,

d,
InPY(t) ~ —tdots | (4.10)
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then Eq. (4.8) predicts for e — 0

Inp(e) ~ —e %/2 (4.11)
which is the corresponding Lifshitz tail for the density of
states [17].

The exponent dyo, defined by Eq. (4.11), can be thought
of as the analog of the spectral dimension [15] of the usual
kinetic random walk. It should be stressed, however,
that, unlike that case, do is not a power law exponent
and is not related to the return probability but to the
survival-return probability.

V. NUMERICAL RESULTS

In order to numerically evaluate the density of states
p(€), we need to diagonalize a large number of large ma-
trices since the thermodynamic limit of a large system
is needed and a disorder average over many such sys-
tems must be taken. This would ordinarily present a
challenge; however, a numerical method using the algo-
rithm developed by Saad [19] conveniently allows us to
diagonalize the matrices approximately and obtain the
eigenspectrum near the extrema with high accuracy. This
method was already successfully exploited in the context
of the kinetic random walks (the so-called ants) [18].

Since the matrix W is symmetric, all the eigenvalues
are real and, moreover, they are contained in the inter-
val (—1,1). The maximum eigenvalue A4z, which has
multiplicity 1 as ensured by the Perron-Frobenious theo-
rem [20] for non-negative matrices, can be interpreted as
the ratio z.fs/z of the effective coordination number to
the full coordination number of the lattice. It should be
noted, however, that W is not a Markov matrix, due to

2.50 T T i T
\ \
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= ® 3
o 1.50 - ¥ W -
ke % 4
< ® i
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= A
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— % 4
Q \
0.50 \ \ 4
\\\ \
\\
0.00 LS. ‘ L
-2.50 -2.00 -1.50 -1.00 -0.50 0.00
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FIG. 3. Evaluation of the exponent do/2 for d = 2 (Q)
and d = 3 (A). The solid lines are the best fit results yielding
do/2 = 2.69+0.04 and 4.4240.14 in d = 2 and 3, respectively.
The corresponding Xo is given in Table II.
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TABLE II. Estimates of the exponents do and xo from the
density of states analysis. For comparison, those of xo cal-
culated from the survival-return probability are also repeated
from Table I.

d do Xo xo (D)* xo (I)*
2 5.38 + 0.08 0.64 £+ 0.01 0.65 + 0.01 0.65 + 0.01
3 8.84 +0.28 0.59 + 0.01 0.72 + 0.01 0.70 + 0.01

2 From Table 1.

the nonconservation of the probability [21].

The disordered media were created as critical percola-
tion clusters, starting from a seed site and growing layer
by layer in a breadth-first fashion and stopping growth
when a predetermined number of sites was generated. In
both d = 2 and 3, we used clusters with a fixed size of
10 000, requiring W of 10000 x 10 000. The exponent dg
has been calculated from the numerically obtained den-
sity of states using Eq. (4.11) and the results are shown
in Fig. 3. We employed 2500 configurations to extract
the values of dy in both two and three dimensions. From
Egs. (3.6) and (4.10), the relation

do _ 21 = x0) (5.1)

follows, allowing the evaluation of xo from that of do.
The final exponent estimates from the density of states
are summarized in Table II, where we have also repeated
the estimates of xo from Table I.

As shown in Fig. 3, the qualitative agreement with Eq.
(4.11) is very clear for both d = 2 and 3. Quantitatively,
the spectral and exact enumeration estimates of xo seem
to be in excellent agreement for d = 2, while those for
d = 3 do not appear to agree as well. In particular,
the trend with the dimensionality seems to be reversed
depending on the method of evaluation. Also the value of
Zefs from the maximum eigenvalue A, turns out to be
3.484+0.04 and 3.67+0.04 in d = 2 and d = 3, respectively.
When compared with the exact enumeration estimates
as discussed in Sec. III, it is apparent that the spectral
calculation in d = 2 is much more consistent with the
exact enumeration result than in d = 3.

The cause of this quantitative discrepancy is still
unclear and it will require further work to determine
whether it is simply a finite size effect or indicative of
a deeper difference between two- and three-dimensional
systems, perhaps due to the much less compact structure
of the disordered media in three dimensions.

VI. LOCALIZATION PROPERTIES

It is well known that, in general, the localization
properties of the eigenstates of a given Hamiltonian are
strongly affected by the presence of quenched disorder
[22]. Fewer efforts have been devoted, however, to the
cases where the disorder is critical, as in the present prob-
lem.

We shall present here some preliminary results, based

6. T T T
5. 9 0 -
sc +
4. o |
S r N
Q
2. =

FIG. 4. Eigenspectra of a typical 400 x 400 transition prob-
ability matrix in d = 2 () and d = 3 (+) at critical disorder.
“sq” refers to the square lattice and “sc” refers to simple cubic
lattice.

on the numerical investigations of the spectrum in the
case of small matrices, but which nevertheless allow us to
obtain a qualitative idea of the difference from the case in
the absence of traps. A more detailed investigation along
with a careful comparison with the case of the kinetic
random walk are still in progress and will be published
subsequently.

In Fig. 4 we show the entire spectra averaged over a
number of typical configurations in d = 2 and 3. The
symmetry about A = 0 is due to the bipartite nature
of the lattices used, and the absence of the eigenvalue

0.5 S T T T
0.4 d=2 (SCI) _
0.3 - —
— °
-
o
0.2 - : —
° Se ° o mgo
0.1 :. . * .o.. :‘. ... .O ;.0.. —
e e e T
;»;‘o;‘::.r'.‘...:.o ’:::o -
0.0 . .
-1.0 -0.5 0.0 0.5 1.0
A

FIG. 5. Participation ratio P(A) for the spectrum of a
400 x 400 transition probability matrix in d = 2 at critical
disorder. “sq” refers to the square lattice.
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FIG. 6. Participation ratio P(A) for the spectrum of a
400 x 400 transition probability matrix in d = 3 at critical
disorder. “sc” refers to the simple cubic lattice.

with magnitude 1 (or close to it) reflects the lack of the
conservation of probability. Clearly there is no trace of
the accumulation of modes near the maximum as is the
case for the ants [18].

A quantitative measurement of the degree of localiza-
tion of a mode is given by the participation ratio [23]:

Do lux(M)[*
(X lux(N)[2)2

where uy is the amplitude of the mode at x . With this
definition, we have P(A) € [0,1] and a value close to 1
corresponds to a well localized state, while a small value
(of order of 1/S where S is the number of sites in the
cluster C) corresponds to an extended state.

We diagonalized exactly a small matrix of 400 x 400 for
both d = 2 and d = 3. The results for P(A) are presented
in Figs. 5 and 6 in d = 2 and 3, respectively. Even though
all states are localized, it appears that some modes are
particularly strongly localized, such as those correspond-
ing to the extreme negative part of the spectrum, while
some more closely resemble an extended state. To il-
lustrate this, we plot in Fig. 7 the amplitudes of some
chosen modes in the d = 2 case. Figures 7(a) and 7(b)
correspond to the two extremal eigenvalues (negative and
positive) and 7(c) to a less localized state at A = 0. These
structures seem to be consistent with their participation
ratios. Similar results persist also for different configura-
tions.

P(\) = (6.1)

VII. CONCLUSIONS

The main aim of the present work is to confirm the
existence of a stretched-exponential tail in the long-time

0.8 | (a)

X

FIG. 7. Plot of the x = (x,y) dependence of the am-
plitude ux(\) of the eigenmodes corresponding to the lower
(A = —0.8390...), upper (A = 0.8390...), and middle (A = 0)
part of the spectrum [in (a), (b), and (c), respectively] for the
two-dimensional case.
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behavior of the various probabilities for diffusion with
critically disordered traps. This has been accomplished
by comparing the predicted values of the appropriate ex-
ponents based on the exact enumeration results with the
corresponding Lifshitz tail in the density of states of the
transition probability matrix.

Numerical results indicate that the two procedures give
qualitatively consistent results in both two and three di-
mensions. Quantitative agreement is also excellent in two
dimensions; however, it is substantially poorer in three
dimensions. More work will be necessary to determine
the cause of this numerical discrepancy.

The localization properties of the eigenstates of this
system were also investigated using mainly the partici-

pation ratio. It was found that, although all states seem
to have a localized character, a wide range of the degree
of localization, ranging from almost extended to fully lo-
calized, is present. In particular, the lowest extreme of
the spectrum (in the negative part, which does not seem
to play any role in the determination of the long-time
diffusional behavior) is extremely localized.
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FIG. 7. Plot of the x = (z,y) dependence of the am-
plitude ux(A) of the eigenmodes corresponding to the lower
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part of the spectrum [in (a), (b), and (c), respectively] for the
two-dimensional case.



